

ПРОТОКОЛ № 05-18-906 Пр от 23.08.2018

Испытания серийных образцов ОВВ «Кратос» зав. № 973-05-17, ИДД «Кербер-Т» зав. № А18-2016

Начальник ОХТИ

И.В. Мирошниченко

« 26 » 2018 г.

1 Обоснование для проведения испытаний

Обращение Генерального директора ФГУП «НИТИ им. А.П. Александрова» Василенко Вячеслава Андреевича к Командующему СЗО ВНГ РФ Дашкову Павлу Петровичу «О проведении испытаний обнаружителей взрывчатых веществ на полевом выходе» исх. от 24.07.2018 № 18/0201-11/6835 (копия письма в Приложении А). Предложение ВРИО начальника штаба Сошинского Олега Александровича о проведении испытаний обнаружителей взрывчатых веществ на территории полигона войсковой части 6821 от 08.08.2018 № 300/28-3903 (копия письма в Приложении Б).

2 Объект испытаний

- 1.1 Объектом испытаний являлись серийные образцы обнаружителя взрывчатых веществ (ОВВ) «Кратос» зав. № 973-05-17, ионно-дрейфового детектора (ИДД) «Кербер-Т» зав. № А18-2016, эксплуатируемые отделом химико-технологических исследований и службой безопасности ФГУП «НИТИ им. А.П. Александрова».
- 1.2 При испытаниях ОВВ «Кратос» подключали к ноутбуку, а ИДД «Кербер-Т» к монитору, обеспечивающим визуализацию регистрируемых сигналов.

3 Цель и задачи испытаний

- 3.1 Целью испытаний являлось определение возможности обнаружения следов взрывчатых и сопутствующих им веществ на пальцах рук человека, имевшего контакт с взрывчатыми веществами (ВВ).
- 3.2 Задача испытаний заключалась в определении возможности обнаружения с помощью ОВВ «Кратос» и ИДД «Кербер-Т» следовых количеств 2,4,6-тринитротолуола (ТНТ), циклотриметилентринитрамина (гексоген) и пентаэритриттетранитрата (ПЭТН) в отпечатках пальца после касания взрывчатых веществ: тротиловая шашка (400 грамм), пластит ПВВ-7 на основе гексогена и детонирующий шнур ДШ на основе ПЭТН.

4 Сроки и место проведения испытаний

Испытания проводили 21 августа 2018 г. на территории полигона войсковой части 6821 (Петродворец) во время проведения занятий инженерными подразделениями).

5 Состав комиссии испытаний

Протокол подготовлен комиссией в составе:

Председатель – главный научный сотрудник ОХТИ ФГУП

комиссии «НИТИ им. А.П. Александрова» Буряков И.А.

Члены комиссии: - старший научный сотрудник ОХТИ ФГУП

«НИТИ им. А.П. Александрова» Буряков Т.И.

– ведущий инженер ОИА ОФЗ СБ

ФГУП «НИТИ им. А.П. Александрова» Степучев Р.А.

инженер ОХТИ

ФГУП «НИТИ им. А.П. Александрова» Млотек В.Н.

6 Методика испытаний

Перед проведением испытаний была проведена проверка работоспособности ОВВ «Кратос» и ИДД «Кербер-Т» с помощью стандартных растворов ТНТ, гексогена и ПЭТН. В испытаниях участвовали шесть человек (военнослужащие ВНГ). Три человека не касались ВВ, а три человека руками производили манипуляции с тротиловой шашкой 400 грамм, пластитом ПВВ-7 на основе гексогена или детонирующим шнуром ДШ на основе ПЭТН в течение нескольких десятков секунд. Видимые следы ВВ с рук удалялись ветошью. Далее все шесть участников испытаний попеременно наносили отпечатки пальцев на устройства отбора пробы ОВВ «Кратос» и ИДД «Кербер-Т» и эти отпечатки анализировались на предмет обнаружения в них следов ВВ.

7 Условия при проведении испытаний

Атмосферные условия при проведении испытаний указаны в таблице 1.

Таблица 1 – Атмосферные условия при проведении испытаний

Дата проведения	Температура,	Относительная	Атм. давление,	Осадки
испытаний	°C	влажность, %	мм рт. ст.	
21.08.2018	15	89	750	Мелкий дождь

Приборы располагались под навесом. Отдельные мелкие капли дождя присутствовали на поверхностях испытываемых устройств.

8 Материально-техническое обеспечение

Питание устройств осуществлялось от портативной инверторной электростанции FUBAG TI 1000 с номинальным напряжением 230 В и номинальной частотой 50 Гц.

Перечень средств измерений, вспомогательных устройств, реактивов и материалов, применяемых при испытаниях, приведен в таблице 2.

Таблица 2 – Перечень средств измерений, вспомогательных устройств, реактивов и материалов, применяемых при испытаниях

Наименование	Тип
Метеостанция	Testo 625
Ацетон	TY COMP 2-044-06
Ветошь	бязь
Фольга 14 мкм	ТУ 1811-62649225-2012

9 Результаты испытаний

9.1. Результаты испытаний ОВВ «Кратос». На съемную накладку устройства отбора пробы ОВВ «Кратос» в произвольной последовательности военнослужащие ВНГ нажимали чистыми и загрязненными пальцами (тротил, ПВВ-7 или ДШ). Каждый раз после использования всех четырех накладок их протирали ветошью, смоченной в ацетоне. Результаты отклика ОВВ «Кратос» представлены в таблице 3.

Таблица 3 – Отклик OBB «Кратос» на наличие или отсутствие BB на пальцах рук

п/п	Наличие ВВ на пальцах руки	Красный индикатор «Тревога»	Зеленый индикатор «Не обнаружено»
1	—	«тревога» —	+
2	тротил	+	_
3	_	_	+
4	тротил	+	_
5	_	-	+
6	_	-	+
7	ПВВ-7	+	-
8	_	-	+
9	ПВВ-7	+	_
10	_	_	+
11	_	_	+
12	ПВВ-7	+	_
13	тротил	+	_
14	тротил	+	-
15	-	_	+
16	_		+
17	ДШ	+	_
18	_	-	+

п/п	Наличие BB	Красный индикатор «Тревога»	Зеленый индикатор «Не обнаружено»
	на пальцах руки	«TpeBora»	«пе обнаружено»
19	ДШ	+	_
20	_	_	+
21	тротил	+	-

Обозначения, использованные в таблице:

« + » – наличие сигнала индикатора на OBB «Кратос»,

« – » – отсутствие ВВ на пальце руки и отсутствие сигнала индикатора на ОВВ «Кратос».

Как видно из таблицы 3, при анализе с помощью OBB «Кратос» отпечатков пальцев людей, которые производили манипуляции с тротилом, ПВВ-7 или ДШ, регистрировался сигнал «ТРЕВОГА», а при анализе отпечатков пальцев тех, кто не касался этих веществ, сигнал «ТРЕВОГА» отсутствовал.

9.2 Результаты испытаний ИДД «Кербер-Т». На одноразовые салфетки из алюминиевой фольги (лист 100×70 мм, толщиной 14 мкм) в произвольной последовательности военнослужащие ВНГ нажимали чистыми и загрязненными пальцами (тротил, ПВВ-7 или ДШ). Далее салфетки анализировали с помощью ИДД «Кербер-Т». Результаты отклика ИДД «Кербер-Т» представлены в таблице 4.

Таблица 4 – Отклик ИДД «Кербер-Т» на наличие или отсутствие ВВ на пальцах рук

п/п	Наличие ВВ на пальцах руки	Индикатор «Тревога»	Индикатор «Не обнаружено»	Примечание
1	_	_	+	
2	тротил	-	_	Регистрировался пик «Lact» (не ТНТ)
3	_	_	+	
4	тротил	+	_	
5	тротил	+	_	
6	-	_	+	
7	ПВВ-7	+	_	
8	ПВВ-7	_	_	Амплитуда пика гексогена была меньше уровня срабатывания
9	-	_	+	
10	ПВВ-7	_	_	Амплитуда пика гексогена была меньше уровня срабатывания
11	ПВВ-7	+	_	•
12	тротил	+	_	

п/п	Наличие ВВ на пальцах руки	Индикатор «Тревога»	Индикатор «Не обнаружено»	Примечание
13	тротил	+	- Harama -	
14	_	-	+	
15	тротил	+	-	
16	ДШ	+	-	

Обозначения, использованные в таблице:

«+» – наличие сигнала на индикаторе ИДД «Кербер-Т»,

« – » – отсутствие ВВ на пальце руки и отсутствие сигнала на индикаторе ИДД «Кербер-Т».

При анализе с помощью ИДД «Кербер-Т» (таблица 4) одноразовых салфеток, на которые наносили отпечатки пальца военнослужащие ВНГ, производившие манипуляции с тротилом, ПВВ-7 или ДШ, прибор не каждый раз вырабатывал сигнал тревоги: один раз прибор не зарегистрировал наличие тротила, дважды при анализе ПВВ-7 в спектре присутствовал пик гексогена амплитудой, недостаточной для выработки сигнала тревоги.

10. Выводы:

10.1. ОВВ «Кратос» и ИДД «Кербер-Т» способны обнаружить следы ТНТ, гексогена и ПЭТН в отпечатках пальцев людей, которые производили манипуляции с тротилом, ПВВ-7 или ДШ.

10.2. В некоторых случаях (в данных испытаниях трижды) ИДД «Кербер-Т» не формировал сигнал тревоги при наличии следов ТНТ, гексогена, однако пики этих веществ в спектрах наблюдались.

Председатель комиссии:

Главный научный сотрудник ОХТИ ФГУП

«НИТИ им. А.П. Александрова»

Члены комиссии:

Старший научный сотрудник ОХТИ

ФГУП «НИТИ им. А.П. Александрова»

Ведущий инженер ОИА ОФЗ СБ

ФГУП «НИТИ им. А.П. Александрова»

Инженер ОХТИ

ФГУП «НИТИ им. А.П. Александрова»

ШАшк И.А. Буряков 2018 г.

Т.И. Буряков
225 " 2018 г.

Р.А. Степучев 2018 г.

"28 " В.Н. Млотек 2018 г.